Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.06.12.544667

ABSTRACT

The COVID-19 pandemic both relied and placed significant burdens on the experts involved from research and public health sectors. The sustained high pressure of a pandemic on responders, such as healthcare workers, can lead to lasting psychological impacts including acute stress disorder, post-traumatic stress disorder, burnout, and moral injury, which can impact individual wellbeing and productivity. As members of the infectious disease modelling community, we convened a reflective workshop to understand the professional and personal impacts of response work on our community and to propose recommendations for future epidemic responses. The attendees represented a range of career stages, institutions, and disciplines. This piece was collectively produced by those present at the session based on our collective experiences. Key issues we identified at the workshop were lack of institutional support, insecure contracts, unequal credit and recognition, and mental health impacts. Our recommendations include rewarding impactful work, fostering academia-public health collaboration, decreasing dependence on key individuals by developing teams, increasing transparency in decision-making, and implementing sustainable work practices. Despite limitations in representation, this workshop provided valuable insights into the UK COVID-19 modelling experience and guidance for future public health crises. Recognising and addressing the issues highlighted here is crucial, in our view, for ensuring the effectiveness of epidemic response work in the future.


Subject(s)
Chemical and Drug Induced Liver Injury , Communicable Diseases , Tooth, Impacted , COVID-19 , Stress Disorders, Traumatic , Stress Disorders, Traumatic, Acute
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.15.500228

ABSTRACT

ABSTRACT The ability to distinguish imported cases from locally acquired cases has important consequences for the selection of public health control strategies. Genomic data can be useful for this, for example using a phylogeographic analysis in which genomic data from multiple locations is compared to determine likely migration events between locations. However, these methods typically require good samples of genomes from all locations, which is rarely available. Here we propose an alternative approach that only uses genomic data from a location of interest. By comparing each new case with previous cases from the same location we are able to detect imported cases, as they have a different genealogical distribution than that of locally acquired cases. We show that, when variations in the size of the local population are accounted for, our method has good sensitivity and excellent specificity for the detection of imports. We applied our method to data simulated under the structured coalescent model and demonstrate relatively good performance even when the local population has the same size as the external population. Finally, we applied our method to several recent genomic datasets from both bacterial and viral pathogens, and show that it can, in a matter of seconds or minutes, deliver important insights on the number of imports to a geographically limited sample of a pathogen population.


Subject(s)
Communicable Diseases
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.07.495142

ABSTRACT

Accurate inference of who infected whom in an infectious disease outbreak is critical for the delivery of effective infection prevention and control. The increased resolution of pathogen whole-genome sequencing has significantly improved our ability to infer transmission events. Despite this, transmission inference often remains limited by the lack of genomic variation between the source case and infected contacts. Although within-host genetic diversity is common among a wide variety of pathogens, conventional whole-genome sequencing phylogenetic approaches to reconstruct outbreaks exclusively use consensus sequences, which consider only the most prevalent nucleotide at each position and therefore fail to capture low frequency variation within samples. We hypothesized that including within-sample variation in a phylogenetic model would help to identify who infected whom in instances in which this was previously impossible. Using whole-genome sequences from SARS-CoV-2 multi-institutional outbreaks as an example, we show how within-sample diversity is stable among repeated serial samples from the same host, is transmitted between those cases with known epidemiological links, and how this improves phylogenetic inference and our understanding of who infected whom. Our technique is applicable to other infectious diseases and has immediate clinical utility in infection prevention and control.


Subject(s)
Communicable Diseases
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.06.21261725

ABSTRACT

Quarantining close contacts of individuals infected with SARS-CoV-2 for 10 to 14 days is a key strategy in reducing transmission. However, quarantine requirements are often unpopular, with low adherence, especially when a large fraction of the population has been vaccinated. Daily contact testing (DCT), in which contacts are required to isolate only if they test positive, is an alternative to quarantine for mitigating the risk of transmission from traced contacts. In this study, we developed an integrated model of COVID-19 transmission dynamics and compared the strategies of quarantine and DCT with regard to reduction in transmission and social/economic costs (days of quarantine/self-isolation). Specifically, we compared 10-day quarantine to 7 days of self-testing using rapid lateral flow antigen tests, starting 3 days after exposure to a case. We modelled both incomplete adherence to quarantine and incomplete adherence to DCT. We found that DCT reduces transmission from contacts with similar effectiveness, at much lower social/economic costs, especially for highly vaccinated populations. The findings were robust across a spectrum of scenarios with varying assumptions on the speed of contact tracing, sensitivity of lateral flow antigen tests, adherence to quarantine and uptake of testing. Daily tests would also allow rapid initiation of a new round of tracing from infected contacts.


Subject(s)
COVID-19
5.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2102.05445v1

ABSTRACT

Digital contact tracing is a public health intervention. It should be integrated with local health policy, provide rapid and accurate notifications to exposed individuals, and encourage high app uptake and adherence to quarantine. Real-time monitoring and evaluation of effectiveness of app-based contact tracing is key for improvement and public trust.


Subject(s)
COVID-19
6.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3716879

ABSTRACT

Background: The timing of SARS-CoV-2 transmission is a critical factor to understand the epidemic trajectory and the impact of isolation, contact tracing and other non-pharmaceutical interventions on the spread of COVID-19 epidemics. Methods: We examined the distribution of transmission event times with respect to exposure and onset of symptoms. We analysed 119 transmission pairs with known date of onset of symptoms for both index and secondary cases and partial information on their intervals of exposure. We inferred the distribution for generation time and time from onset of symptoms to transmission by maximum likelihood. We modelled different relations between time of infection, onset of symptoms and transmission, inferring the most appropriate one according to the Akaike Information Criterion. Finally, we estimated the fraction of pre-symptomatic and early symptomatic transmissions among all pairs using a Bayesian approach.Findings: For symptomatic individuals, the timing of transmission of SARS-CoV-2 was more directly linked to the onset of clinical symptoms of COVID-19 than to the time since infection. The time of transmission was approximately centered and symmetric around the onset of symptoms, with three quarters of events occurring in the window from 2-3 days before to 2-3 days after. The pre-symptomatic infectious period extended further back in time for individuals with longer incubation periods. Overall, the fraction of transmission from strictly pre-symptomatic infections was high (41%; 95%CI 31-50%), but a comparably large fraction of transmissions occurred on the same day as the onset of symptoms or the next day (35%; 95%CI 26-45%). We caution against overinterpretation of the fraction and timing of late symptomatic transmissions, due to their dependence on behavioural factors and interventions. Interpretation: Infectiousness is causally driven by the onset of symptoms. Public health authorities should reassess their policies on the contact tracing window in the light of individual variability in presymptomatic infectious period. Information about when a case was infected should be collected where possible, in order to assess how far into the past their contacts should be traced. The large fraction of transmission from strictly pre-symptomatic infections limits the efficacy of symptom-based interventions, while the large fraction of early symptomatic transmissions underlines the critical importance of individuals distancing themselves from others as soon as they notice any symptoms, even if mild. Rapid or at-home testing and contextual risk information could greatly facilitate efficient early isolation.Funding Statement: The study was funded by an award from the Li Ka Shing Foundation to CF.Declaration of Interests: None of the authors have competing financial or non-financial interests.


Subject(s)
COVID-19
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.16.20195925

ABSTRACT

SARS-CoV-2 has spread across the world, causing high mortality and unprecedented restrictions on social and economic activity. Policymakers are assessing how best to navigate through the ongoing epidemic, with models being used to predict the spread of infection and assess the impact of public health measures. Here, we present OpenABM-Covid19: an agent-based simulation of the epidemic including detailed age-stratification and realistic social networks. By default the model is parameterised to UK demographics and calibrated to the UK epidemic, however, it can easily be re-parameterised for other countries. OpenABM-Covid19 can evaluate non-pharmaceutical interventions, including both manual and digital contact tracing. It can simulate a population of 1 million people in seconds per day allowing parameter sweeps and formal statistical model-based inference. The code is open-source and has been developed by teams both inside and outside academia, with an emphasis on formal testing, documentation, modularity and transparency. A key feature of OpenABM-Covid19 is its Python interface, which has allowed scientists and policymakers to simulate dynamic packages of interventions and help compare options to suppress the COVID-19 epidemic.


Subject(s)
COVID-19
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.04.20188516

ABSTRACT

The timing of SARS-CoV-2 transmission is a critical factor to understand the epidemic trajectory and the impact of isolation, contact tracing and other non- pharmaceutical interventions on the spread of COVID-19 epidemics. We examined the distribution of transmission events with respect to exposure and onset of symptoms. We show that for symptomatic individuals, the timing of transmission of SARS-CoV-2 is more strongly linked to the onset of clinical symptoms of COVID-19 than to the time since infection. We found that it was approximately centered and symmetric around the onset of symptoms, with three quarters of events occurring in the window from 2-3 days before to 2-3 days after. However, we caution against overinterpretation of the right tail of the distribution, due to its dependence on behavioural factors and interventions. We also found that the pre-symptomatic infectious period extended further back in time for individuals with longer incubation periods. This strongly suggests that information about when a case was infected should be collected where possible, in order to assess how far into the past their contacts should be traced. Overall, the fraction of transmission from strictly pre-symptomatic infections was high (41%; 95%CI 31-50%), which limits the efficacy of symptom-based interventions, and the large fraction of transmissions (35%; 95%CI 26-45%) that occur on the same day or the day after onset of symptoms underlines the critical importance of individuals distancing themselves from others as soon as they notice any symptoms, even if they are mild. Rapid or at-home testing and contextual risk information would greatly facilitate efficient early isolation.


Subject(s)
COVID-19
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.07.286088

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a highly infectious and pathogenic virus has claimed lot of lives globally since its outbreak in December 2019 posing dire threat on public health, global economy, social and human interaction. At moderate rate, mutations in the SARS-CoV-2 genome are evolving which might have contributed to viral genome variability, transmission, replication efficiency and virulence in different regions of the world. The present study elucidated the mutational landscape in SARS-CoV-2 genome among the African population, which may have contributed to the virulence, pathogenicity and transmission observed in the region. Multiple sequence alignment of the SARS-CoV-2 genome (356 viral protein sequences) was performed using ClustalX version 2.1 and phylogenetic tree was built using Molecular Evolutionary Genetics Analysis (MEGA) X software. ORF1ab polyprotein, spike glycoprotein, ORF3, ORF8 and nucleocapsid phosphoprotein were observed as mutational hotspots in the African population and may be of keen interest in the adaptability of SARS-CoV-2 to the human host. While, there is conservation in the envelope protein, membrane glycoprotein, ORF6, ORF7a, ORF7b and ORF10. The accumulation of moderate mutations (though slowly) in the SARS-CoV-2 genome as revealed in our study, could be a promising strategy to develop drugs or vaccines with respect to the viral conserved domains and host cellular proteins and/or receptors involved in viral invasion and replication to avoid a new viral wave due to drug resistance and vaccine evasion.

10.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.12.20151753

ABSTRACT

In May 2020 the UK introduced a Test, Trace, Isolate programme in response to the COVID-19 pandemic. The programme was first rolled out on the Isle of Wight and included Version 1 of the NHS contact tracing app. We used COVID-19 daily case data to infer incidence of new infections and estimate the reproduction number R for each of 150 Upper Tier Local Authorities in England, and at the National level, before and after the launch of the programme on the Isle of Wight. We used Bayesian and Maximum-Likelihood methods to estimate R, and compared the Isle of Wight to other areas using a synthetic control method. We observed significant decreases in incidence and R on the Isle of Wight immediately after the launch. These results are robust across each of our approaches. Our results show that the sub-epidemic on the Isle of Wight was controlled significantly more effectively than the sub-epidemics of most other Upper Tier Local Authorities, changing from having the third highest reproduction number R (of 150) before the intervention to the tenth lowest afterwards. The data is not yet available to establish a causal link. However, the findings highlight the need for further research to determine the causes of this reduction, as these might translate into local and national non-pharmaceutical intervention strategies in the period before a treatment or vaccination becomes available.


Subject(s)
COVID-19
11.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.08.20032946

ABSTRACT

The newly emergent human virus SARS-CoV-2 is resulting in high fatality rates and incapacitated health systems. Preventing further transmission is a priority. We analysed key parameters of epidemic spread to estimate the contribution of different transmission routes and determine requirements for case isolation and contact-tracing needed to stop the epidemic. We conclude that viral spread is too fast to be contained by manual contact tracing, but could be controlled if this process was faster, more efficient and happened at scale. A contact-tracing App which builds a memory of proximity contacts and immediately notifies contacts of positive cases can achieve epidemic control if used by enough people. By targeting recommendations to only those at risk, epidemics could be contained without need for mass quarantines ('lock-downs') that are harmful to society. We discuss the ethical requirements for an intervention of this kind.

SELECTION OF CITATIONS
SEARCH DETAIL